Selective fasciculation and divergent pathfinding decisions of embryonic chick motor axons projecting to fast and slow muscle regions.
نویسندگان
چکیده
Proper motor function requires the precise matching of motoneuron and muscle fiber properties. The lack of distinguishing markers for early motoneurons has made it difficult to determine whether this matching is established by selective innervation during development or later via motoneuron-muscle fiber interactions. To examine whether chick motoneurons selectively innervate regions of their target containing either fast or slow muscle fibers, we backlabeled neurons from each of these regions with lipophilic dyes. We found that motor axons projecting to fast and slow muscle regions sorted into separate but adjacent fascicles proximally in the limb, long before they reached the muscle. More distally, these fascicles made divergent pathfinding decisions to course directly to the appropriate muscle fiber region. In contrast, axons projecting to different areas of an all-fast muscle did not fasciculate separately and became more intermingled as they coursed through the limb. Selective fasciculation of fast- and slow-projecting motoneurons was similar both before and after motoneuron cell death, suggesting that motoneurons specifically recognized and fasciculated with axons growing to muscle regions containing the appropriate muscle fiber type. Taken together, these results strongly support the hypothesis that "fast" and "slow" motoneurons are molecularly distinct before target innervation and that they use these differences to selectively fasciculate, pathfind to, and branch within the correct muscle fiber region from the outset of neuromuscular development.
منابع مشابه
Increasing the frequency of spontaneous rhythmic activity disrupts pool-specific axon fasciculation and pathfinding of embryonic spinal motoneurons.
Rhythmic spontaneous bursting activity, which occurs in many developing neural circuits, has been considered to be important for the refinement of neural projections but not for early pathfinding decisions. However, the precise frequency of bursting activity differentially affects the two major pathfinding decisions made by chick lumbosacral motoneurons. Moderate slowing of burst frequency was ...
متن کاملThe spatial relationships among cutaneous, muscle sensory and motoneuron axons during development of the chick hindlimb.
Previous studies have suggested that interactions with other axons are important in sensory axon pathfinding in the developing chick hindlimb. Yet the nature of these interactions remains unknown, in part because information about the spatial relationships among the different kinds of axons is lacking. To obtain this information, we combined retrograde axonal tracing with an immunofluorescent l...
متن کاملAxon guidance of Drosophila SNb motoneurons depends on the cooperative action of muscular Krüppel and neuronal capricious activities
The body wall musculature of the Drosophila larva consists of a stereotyped pattern of 30 muscles per abdominal hemisegment which are innervated by about 40 distinct motoneurons. Proper innervation by motoneurons is established during late embryogenesis. Guidance of motor axons to specific muscles requires appropriate pathfinding decisions as they follow their pathways within the central nervou...
متن کاملNetrin-3 protein is localized to the axons of motor, sensory, and sympathetic neurons
The netrin family of axon guidance cues has been shown to play a pivotal role in the guidance of a variety of axon projections during embryonic development, both in the vertebrate and invertebrate. While the guidance potential of netrin-1 has been examined in depth in many regions of the developing mouse brain very little information is available on the expression and activity of netrin-3. Here...
متن کاملSlit-mediated repulsion is a key regulator of motor axon pathfinding in the hindbrain.
The floor plate is known to be a source of repellent signals for cranial motor axons, preventing them from crossing the midline of the hindbrain. However, it is unknown which molecules mediate this effect in vivo. We show that Slit and Robo proteins are candidate motor axon guidance molecules, as Robo proteins are expressed by cranial motoneurons, and Slit proteins are expressed by the tissues ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 18 9 شماره
صفحات -
تاریخ انتشار 1998